Effect of Milling Time on Hydrogen Desorption Properties of Nanocrystalline MgH2

Authors

  • Ali Motavalli Department of Material Science and Engineering, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
  • Alireza Gholipoor Department of Material Science and Engineering, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
  • Mohammad Rajabi Department of Material Science and Engineering, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Abstract:

Nanocrystalline magnesium hydride powder was synthesized by mechanical milling of MgH2 in a planetary ball mill for various times. The effect of MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area on the hydrogen desorption properties was investigated. A single peak of hydrogen desorption was observed for as-received powder, exhibiting an average particle size of 30 µm. In contrast, all milled powders with much reduced particle size exhibited desorption peak doublet in DTA. It was shown that the dehydrogenation temperature of MgH2 decreased from 421 ºC to 319 ºC after 30 h mechanical milling. Here, the average crystallite size, specific surface area and accumulated lattice strain were 18 nm, 9.3 m2/g and 0.7%, respectively. There was no significant difference on the onset temperature of dehydrogenation between powders milled in different times. However, the amount of hydrogen release was decreased, i.e. from 5.9 wt.% to 4 wt.% with increasing the milling time from 5 h to 30 h.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

EFFECT OF SiC ADDITION ON HYDROGEN DESORPTION PROPERTIES OF NANOCRYSTALLINE MgH2 SYNTESIZED BY MECHANICAL ALLOYING

In this study, the composite material with composition of MgH2-5 wt% SiC has been prepared by co-milling of MgH2 with SiC powder. The effect of milling time and additive on MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area, and also hydrogen desorption properties of obtained composite was evaluated by thermal analyzer method and compared with pure un...

full text

Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying

Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...

full text

hydrogen desorption properties of nanocrystalline mgh2-10 wt.% zrb2 composite prepared by mechanical alloying

storage of hydrogen is one of the key challenges in developing hydrogen economy. magnesium hydride (mgh2) is an attractive candidate for solid-state hydrogen storage for on-board applications. in this study, 10 wt.% zrb2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. the effect of milling time and additive on the hydrogen desorption ...

full text

effect of oral presentation on development of l2 learners grammar

this experimental study has been conducted to test the effect of oral presentation on the development of l2 learners grammar. but this oral presentation is not merely a deductive instruction of grammatical points, in this presentation two hypotheses of krashen (input and low filter hypotheses), stevicks viewpoints on grammar explanation and correction and widdowsons opinion on limited use of l1...

15 صفحه اول

Effect of transition-metal additives on hydrogen desorption kinetics of MgH2

Using first-principles calculations, we study the effect of transition-metal additives (Ti, Fe, Co, and Ni) on the rate of hydrogen desorption in MgH2. The presence of large concentrations of transition-metal impurities causes the Fermi level to shift according to the position of the transition-metal acceptor/donor levels in the band gap. This shift can lower the formation energy of native defe...

full text

Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling.

We examined the catalytic effect of nanoparticle 3d-transition metals on hydrogen desorption (HD) properties of MgH(2) prepared by mechanical ball milling method. All the MgH(2) composites prepared by adding a small amount of nanoparticle Fe(nano), Co(nano), Ni(nano), and Cu(nano) metals and by ball milling for 2 h showed much better HD properties than the pure ball-milled MgH(2) itself. In par...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  67- 72

publication date 2014-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023